Part Number Hot Search : 
XC6413 FM160 T113059 XC6413 25ETTS 2SK1008 CFD1275R AOTF4185
Product Description
Full Text Search
 

To Download CPV363M4F Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current, each igbt 16 i c @ t c = 100c continuous collector current, each igbt 8.7 i cm pulsed collector current ? 50 a i lm clamped inductive load current ? 50 i f @ t c = 100c diode continuous forward current 6.1 i fm diode maximum forward current 50 v ge gate-to-emitter voltage 20 v v isol isolation voltage, any terminal to case, 1 minute 2500 v rms p d @ t c = 25c maximum power dissipation, each igbt 36 w p d @ t c = 100c maximum power dissipation, each igbt 14 t j operating junction and -40 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 5-7 lbf?in (0.55-0.8 n?m) CPV363M4F preliminary pd -5038 parameter typ. max. units r q jc (igbt) junction-to-case, each igbt, one igbt in conduction CCC 3.5 r q jc (diode) junction-to-case, each diode, one diode in conduction CCC 5.5 c/w r q cs (module) case-to-sink, flat, greased surface 0.10 CCC wt weight of module 20 (0.7) CCC g (oz) fast igbt igbt sip module thermal resistance features description 3 6 71319 18 15 10 16 4 9 12 d1 d3 d5 d2 d4 d6 q1 q2 q3 q4 q5 q6 1 output current in a typical 5.0 khz motor drive product summary ? fully isolated printed circuit board mount package ? switching-loss rating includes all "tail" losses ? hexfred tm soft ultrafast diodes ? optimized for medium operating (1 to 10 khz) see fig. 1 for current vs. frequency curve 11 a rms per phase (3.1 kw total) with t c = 90c, t j = 125c, supply voltage 360vdc, power factor 0.8, modulation depth 115% (see figure 1) the igbt technology is the key to international rectifier's advanced line of ims (insulated metal substrate) power modules. these modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power mosfet. this superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. this package is highly suited to motor drive applications and where space is at a premium. absolute maximum ratings 1/21/97 ims-2
CPV363M4F parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage ? 600 CCC CCC v v ge = 0v, i c = 250a d v (br)ces / d t j temperature coeff. of breakdown voltage CCC 0.69 CCC v/c v ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage CCC 1.37 1.5 i c = 8.7a v ge = 15v CCC 1.63 CCC v i c = 16a see fig. 2, 5 CCC 1.37 CCC i c = 8.7a, t j = 150c v ge(th) gate threshold voltage 3.0 CCC 6.0 v ce = v ge , i c = 250a d v ge(th) / d t j temperature coeff. of threshold voltage CCC -11 CCC mv/c v ce = v ge , i c = 250a g fe forward transconductance ? 6.0 8.0 CCC s v ce = 100v, i c = 8.7a i ces zero gate voltage collector current CCC CCC 250 a v ge = 0v, v ce = 600v CCC CCC 2500 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop CCC 1.3 1.7 v i c = 12a see fig. 13 CCC 1.2 1.6 i c = 12a, t j = 150c i ges gate-to-emitter leakage current CCC CCC 100 na v ge = 20v electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions q g total gate charge (turn-on) CCC 54 82 i c = 8.7a q ge gate - emitter charge (turn-on) CCC 8.1 12 nc v cc = 400v q gc gate - collector charge (turn-on) CCC 21 32 v ge = 15v see fig. 8 t d(on) turn-on delay time CCC 39 CCC t j = 25c t r rise time CCC 16 CCC ns i c = 8.7a, v cc = 480v t d(off) turn-off delay time CCC 220 330 v ge = 15v, r g = 22 w t f fall time CCC 160 240 energy losses include "tail" and e on turn-on switching loss CCC 0.30 CCC diode reverse recovery. e off turn-off switching loss CCC 0.55 CCC mj see fig. 9, 10, 11, 18 e ts total switching loss CCC 0.85 1.3 t d(on) turn-on delay time CCC 37 CCC t j = 150c, see fig. 9, 10, 11, 18 t r rise time CCC 16 CCC ns i c = 8.7a, v cc = 480v t d(off) turn-off delay time CCC 400 CCC v ge = 15v, r g = 22 w t f fall time CCC 290 CCC energy losses include "tail" and e ts total switching loss CCC 1.57 CCC mj diode reverse recovery. c ies input capacitance CCC 1100 CCC v ge = 0v c oes output capacitance CCC 74 CCC pf v cc = 30v see fig. 7 c res reverse transfer capacitance CCC 14 CCC ? = 1.0mhz t rr diode reverse recovery time CCC 42 60 ns t j = 25c see fig. CCC 80 120 t j = 125c 14 i f = 12a i rr diode peak reverse recovery charge CCC 3.5 6.0 a t j = 25c see fig. CCC 5.6 10 t j = 125c 15 v r = 200v q rr diode reverse recovery charge CCC 80 180 nc t j = 25c see fig. CCC 220 600 t j = 125c 16 di/dt =200as di (rec)m /dt diode peak rate of fall of recovery CCC 180 CCC a/s t j = 25c see fig. during t b CCC 116 CCC t j = 125c 17 switching characteristics @ t j = 25c (unless otherwise specified)
CPV363M4F 0.1 1 10 100 0 2 4 6 8 10 12 14 f, frequency (khz) load current (a) fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics tc = 90c tj = 125c power factor = 0.8 modulation d epth = 1.15 vcc = 50% of rated voltage 0.00 0.59 1.17 1.76 total output power (kw) 3.51 4.10 2.34 2.93 1 10 100 1 10 ce c i , collector-to-emitter current (a) v , collector-to-emitter voltage (v) t = 150c t = 25c j j v = 15v 20s pulse width ge a 1 10 100 56 78 910 c i , collector-to-emitter current (a) ge t = 25c t = 150c j j v , gate-to-emitter voltage (v) a v = 50v 5s pulse width cc
CPV363M4F fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 t , r ectangular pulse d uration (sec) 1 thjc d = 0.50 0.01 0.02 0.05 0.10 0.20 sin gle pu lse (thermal response) t herm al respo nse (z ) p t 2 1 t dm notes: 1. duty factor d = t / t 2. peak t = p x z + t 12 j dm thjc c 25 50 75 100 125 150 0 4 8 12 16 20 t , case temperature ( c) maximum dc collector current(a) c -60 -40 -20 0 20 40 60 80 100 120 140 160 1.0 1.2 1.4 1.6 1.8 2.0 t , junction temperature ( c) v , collector-to-emitter voltage(v) j ce v = 15v 80 us pulse width ge i = a 4.35 c i = a 8.7 c i = a 17.4 c
CPV363M4F fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature 0 10 20 30 40 50 60 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-emitter voltage (v) g ge v = 400v i = 8.7a cc c 0 10 20 30 40 50 0.80 0.82 0.84 0.86 0.88 0.90 r , gate resistance (ohm) total switching losses (mj) g v = 480v v = 15v t = 25 c i = 8.7a cc ge j c -60 -40 -20 0 20 40 60 80 100 120 140 160 0.1 1 10 t , junction temperature ( c ) total switching losses (mj) j r = 22ohm v = 15v v = 480v g ge cc i = a 17.4 c i = a 8.7 c i = a 4.35 c w w 1 10 100 0 400 800 1200 1600 2000 v , collector-to-emitter voltage (v) c, capacitance (pf) ce v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies ge gc , ce res gc oes ce gc c ies c oes c res
CPV363M4F fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa fig. 13 - maximum forward voltage drop vs. instantaneous forward current 0 4 8 12 16 20 0.0 1.0 2.0 3.0 4.0 i , collector-to-emitter current (a) total switching losses (mj) c r = ohm t = 150 c v = 480v v = 15v g j cc ge 22 w 1 10 100 1 10 100 1000 v = 20v t = 125 c ge j o v , collector-to-emitter voltage (v) i , collector-to-emitter current (a) ce c safe operating area 1 10 100 0.4 0.8 1.2 1.6 2.0 2.4 fm f instantaneous forward current - i (a) forward voltage drop - v (v) t = 150c t = 125c t = 25 c j j j
CPV363M4F fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt 0 200 400 600 100 1000 f di /dt - (a/s) rr q - (nc) i = 6.0 a i = 12 a i = 2 4a v = 200v t = 125c t = 25c r j j f f f 10 100 1000 10000 100 1000 f d i /dt - (a/s) d i(rec)m /dt - (a/s) i = 1 2a i = 24a i = 6.0 a f f f v = 200v t = 125c t = 25 c r j j 0 40 80 120 160 100 1000 f d i /dt - (a/s) t - (n s) rr i = 24 a i = 1 2a i = 6.0 a f f f v = 200v t = 125c t = 25c r j j 1 10 100 100 1000 f di /dt - (a/s) i - (a) irrm i = 6.0a i = 1 2a i = 2 4a f f f v = 200v t = 125c t = 25c r j j
CPV363M4F t1 ic vce t1 t2 90% ic 10% vce td(off) tf ic 5% ic t1 +5 s vce ic dt 90% vge +vge eoff = fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery waveforms ic vpk 10% vcc irr 10% irr vcc trr q rr = trr tx id dt same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr
CPV363M4F vg gate signal device under test current d.u.t. vol tage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit r l = 480v 4 x i c @25c 0 - 480v figure 18e. macro waveforms for figure 18a's test circuit
CPV363M4F case outline ? ims-2 notes: ? repetitive rating: v ge =20v; pulse width limited by maximum junction temperature (figure 20) ? v cc =80 %( v ces ), v ge =20v, l=10h, r g = 22 w (figure 19) ? pulse width 80s; duty factor 0.1% . ? pulse width 5.0s, single shot. world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 322 3331 european headquarters: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 7321 victoria park ave., suite 201, markham, ontario l3r 2z8, tel: (905) 475 1897 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir far east: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 315 outram road, #10-02 tan boon liat building, singapore 0316 tel: 65 221 8371 http://www.irf.com/ data and specifications subject to change without notice. 1/97 d im ens ion s in m illim ete rs and (inc he s) ims-2 package outline (13 pins) 7.87 (.310) 5.46 (.215) 1.27 (.050) 6.10 (.240) 3.05 0.38 (.120 .015) 0.51 (.020) 0.38 (.015) 62.43 (2.458) 53.85 (2.120) 3.91 (.154) 2x 21.97 (.865) 3.94 (.155) 4.06 0.51 (.160 .020) 5.08 (.200) 6x 1.27 (.050) 13x 2.54 (.100) 6x 0.76 (.030) 13x 1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 1 5 1 6 17 18 19 notes: 1. tolerance unless otherwise specified 0.254 (.010). 2. controlling d imension: inch. 3. dimensions are shown in millimeter (inches). 4. terminal numbers are shown for refer enc e only.


▲Up To Search▲   

 
Price & Availability of CPV363M4F

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X